IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002 117

Type-2 Fuzzy Sets Made Simple

Jerry M. Mendel and Robert I. Bob John

Abstract—Type-2 fuzzy sets let us model and minimize the ef- type-2 fuzzy sets that provides additional degrees of freedom
fects of uncertainties in rule-base fuzzy logic systems. However, that make it possible to directly model uncertainties.

they are difficult to understand for a variety of reasons which we -y 0 5 f1,77y sets are difficult to understand and use because:
enunciate. In this paper, we strive to overcome the difficulties by:

1) establishing a small set of terms that let us easily communicate (1) the three-dimensional nature of type-2 fuzzy sets makes
about type-2 fuzzy sets and also let us define such sets very pre-them very difficult to draw; (2) there is no simple collection of
cisely, 2) presenting a new representation for type-2 fuzzy sets, and well-defined terms that let us effectively communicate about
3) using this new representation to derive formula; for union, in- type-2 fuzzy sets, and to then be mathematically precise about
tersection and complement of type-2 fuzzy sets without having to . . .
use the Extension Principle. them (terms do exist but have not been precisely defijjed
(3) derivations of the formulas for the union, intersection, and
complement of type-2 fuzzy sets all rely on using Zadeh's
Extension Principle [44], which in itself is a difficult concept
[. INTRODUCTION (especially for newcomers to FL) and is somewhat ad hoc, so
T IS KNOWN that type-2 fuzzy sets let us model and minthat deriving things using it may be considered problematic;
imize the effects ofincertaintiesin rule-based fuzzy logic and, (4) using type-2 fuzzy sets is computationally more com-
systems (FLSs) e.g., [33]. Unfortunately, type-2 fuzzy sets arglicated than using type-1 fuzzy sets. In this paper, we focus
more difficult to use and understand than are type-1 fuzzy se@ overcoming difficulties 1-3, because doing so makes type-2
hence, their use is not yet widespread. In this paper we mdkazy sets easy to use and understand. Difficulty 4 is the price
type-2 fuzzy sets easy to use and understand in the hope @& must pay for achieving better performance in the face of
they will be widely used. uncertainties, and is analogous to using probability rather than
There are (at least) four sources of uncertainties in typedgterminisnt. We only touch on it very briefly in this paper.
FLSs: (1) The meanings of the words that are used in theEven in the face of these difficulties, type-2 fuzzy sets and
antecedents and consequents of rules can be uncertain (wéleg8s have already been used for (this list s in alphabetical order
mean different things to different people). (2) Consequents mbly application):
have a histogram of values associated with them, especially classification of coded video streams [29], co-channel
when knowledge is extracted from a group of experts who dointerference elimination from nonlinear time-varying com-
not all agree. (3) Measurements that activate a type-1 FLS maynunication channels [28], connection admission control
be noisy and therefore uncertain. (4) The data that are used t630], control of mobile robots [42], decision making [43],
tune the parameters of a type-1 FLS may also be noisy. All of[2]. equalization of nonlinear fading channels [20], [32],
these uncertainties translate into uncertainties about fuzzy sei25], [27], extracting knowledge from questionnaire sur-
membership functions. Type-1 fuzzy sets are not able to directlyVeys [15], [30], forecasting of time-series [17], [32], [26],
model such uncertainties because their membership functionfunction approximation [15], learning linguistic member-
are totally crisp. On the other hand, type-2 fuzzy sets are able t>"iP 9rades [12], pre-processing radiographic images [13],
model such uncertainties because their membership functionfll""t'onal databases [3], solving fuzzy relation equations
are themselves fuzzy. Membership functions of type-1 fuzzy setd #1» and transport scheduling [10].
are two-dimensional, whereas membership functions of typelD€y seemtobe applicable when: (1) the data-generating system

fuzzy sets are three-dimensional. Itis the new third-dimensioni§KnOWn to be time-varying but the mathematical description of
the time-variability is unknown (e.g., as in mobile communica-

_ _ ‘ tions); (2) measurement noise is nonstationary and the mathe-
. "z"ggrsc”p”ece“’ed January 17, 2001; revised August 6, 2001 and Septenbetiical description of the nonstationarity is unknown (e.g., as
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Before providing a summary of the coverage of this paper, Au
we provide a brief history of type-2 fuzzy sets and FLSs. [44] L
introduced the concept of a type-2 fuzzy set as an extension
of an ordinary fuzzy set, i.e., a type-1 fuzzy set. [34] studied
the set theoretic operations of type-2 fuzzy sets and properties ,
of membership grades of such sets; they also examined type-2
fuzzy sets under the operations of algebraic product and alge-
braic sum [35]. [37] provided more detail about the algebraic
structure of type-2 fuzzy sets. [14], [15], Karnik and Mendel ex- 0 . >
tended the works of Mizumoto and Tanaka and obtained prac- x
tical algorithms for performing union, intersection, and com-
plement for type-2 fuzzy sets. They also developed the concept
of the centroid of a type-2 fuzzy set and provided a practical
algorithm for computing it for interval type-2 fuzzy sets [15],
[19]. Dubois and Prade [4]-[6] discussed fuzzy valued logic and
gave a formula for the composition of type-2 relations as an ex-
tension of the type-1 sup-star composition; but their formula is
only for the minimum¢-norm. A general formula for the ex-
tended sup-star composition of type-2 relations was given by
[15], [16], and [20]. Based on this formula, [14]-[16] and [20]
established a complete type-2 FLS theory. [8] studied rules and
interval sets for higher-than-type-1 FL. [23], [24], [26] devel-
oped a complete theory for interval type-2 FLSs. They did this ®)
for different kinds of fuzzifiers, and showed how such FLSs can
be designed, i.e., how the free parameters within interval typérE gcu on,
FLSs can be tuned using training data. [12] developed a type-2
learning system that used training data to learn the membership
grades of a type-2 fuzzy system. For additional discussions on
the use of interval sets in fuzzy logic, see [8], [38], [40], [7],

[22], [36], [31], [21], and [1]. There are also some articles about S
type-2 fuzzy sets that have appeared in the Japanese literature
but are only in Japanese. Two examples are [9] and [39].

In Section II, we define a small set of terms that let us easily
communicate about type-2 fuzzy sets, and let us define such set:
in a mathematically precise way. One of these terms—footprint
of uncertainty—enables us to graphically depict type-2 fuzzy
sets in two-dimensions. In Section I, we provide a new rep-
resentation for general type-2 fuzzy sets, one that re-expresse
them in terms of much simpler type-2 fuzzy sets. In Section IV,
we apply this new representation to the derivation of formulas
for the union, intersection, and complement of type-2 fuzzy sets
without having to use the Extension Principle. In Section V, we / A A A N A

draw conclusions. u
Fig.2. Example of atype-2 membership function. The shaded areais the FOU.

H,(x)

(a) Type-1 membership function and (b) blurred type-1 membership
including discretization at = =’.

A I’l‘j(xvu)

Il. TYPE-2 FUzzYy SETS. DEFINITIONS

In this section, we define type-2 fuzzy sets and some impdhose points. Doing this for alt € X, we create a three-di-
tant associated concepts. By doing this, we provide a simple c@iensional membership function—a type-2 membership func-
lection of mathematically well-defined terms that will let us eftion—that characterizes a type-2 fuzzy set.
fectively communicate about type-2 fuzzy sets. This material is Definition 1: A type-2 fuzzy setlenoted4, is characterized
used extensively in the rest of this paper. by atype-2 membership functign; (x, ), wherez € X and

Imagine blurring the type-1 membership function depicted it € J= < [0,1], i.e.,

Fig. 1(a) by shifting the points on the triangle either to the left

or to the right and not necessarily by the same amounts, as inA = {((z,u), p3(z,w)) |Vx € X,Vu € J, C[0,1]} (1)

Fig. 1(b). Then, at a specific value of sayz’, there no longer R

is a single value for the membership functi@r); instead, the in which0 < 5 (x,u) < 1. A can also be expressed as

membership function takes on values wherever the vertical line

intersects the blur. Those values need not all be weighted the o / /
rzeX

. . R C
same; hence, we can assign an amplitude distribution to all of [(@u) Jr S 0,1] 2)
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AR sets, i.e., using (3)we can re-expressi in a vertical-slice
L manner as
A={(z,p3(x)) |z € X} (4)
or, as
A:/. pale a::/. [/ fe(u u}/aﬁ
»x zCX A( )/ zCX wCJy ( )/

J» € 10,1 (5)

Definition 3: Thedomainof a secondary membership func-
tion is called theprimary membershipf =. In (5), .J. is the
primary membership of, whereJ, C [0,1]forVz € X. =

Definition 4: The amplitude of a secondary membership
function is called asecondary gradeln (5), f.(u) is a
secondary grade; in (1);(2', v/ )(2’ € X,v' € Jy)isa
Fig.3. Example of avertical slice for the type-2 membership function depict&ﬁcondary grade. u
in Fig. 2. If X and.J, are both discrete (either by problem formulation,
as in Example 1, or by discretization of continuous universes of
discourse), then the right-most part of (5) can be expressed as

where [[ denotes uniohover all admissible: andu. For dis-

crete universes of discourgeis replaced by . | -

In Definition 1, the firstgrestriction thatv € J, C [0,1] A= Z [Z fw(“)/“]/QC
is consistent with the type-1 constraint tlat< p4(z) < 1, zeX Lucy
i.e., when uncertainties disappear a type-2 membership function N
must reduce to a type-1 membership function, in which case the = Z Z fei(u)/u /xz
variablew equalsua ()5 and0 < pa(xz) < 1. The second i=1l |uely,

restriction thad < p5(x,u) < 1is consistent with the fact that My
the amplitudes of a membership function should lie between or = Z fa (Ulk)/ulk] /xl +oe
be equal to 0 and 1. k=1
Example 1: Fig. 2 depictsu ; (z, v) for z andw discrete. In My
particular, X = {1,2,3,4,5} andU = {0,0.2,0.4,0.6,0.8}.m | D Fa (i) /unn /JUN- (6)
Definition 2: At each value ofr, sayxr = 7/, the 2-D plane k=1
whose axes are and 5 (z',u) is called avertical slice of In this equations also denotes union. Observe thatas been
115 (z, ). A secondary membership functiisra vertical slice of discretized intaV values and at each of these valugsas been
5 (@, w). Itis py(z = 2/, u) forz € X andvu € J,» C [0,1], discretized into}; values. The discretization along eazf
ie., does not have to be the same, which is why we have shown a
different upper sum for each of the bracketed terms. If, however,
pa(x =o' u) = pz(a’) = / Fortw)fu Ju C[0,1] the discretization along eaety; is the same, theid; = M, =
wed IMNEM
(3) Example 1 (Continued)in Fig. 2, the union of the five sec-
ondary membership functions at= 1,2,3,4,5 is u5(z, u).
in which0 < f.(u) < 1. Because&’z’ € X, we drop the Observe that the primary memberships are

prime notation o 5 (z’), and refer tou 4 (z) as a secondary Ji=Js= Jy = J5 = {0,02,0.4,0.6,08)} and
membership function; it is a type-1 fuzzy set, which we also T — 106,08 ? E
refer to as aecondary set n 3 ={0.6,0.8}

Example 1 (Continued)The type-2 membership functionand, we have only included values.a for which y 5 (x, u) #
that is depicted in Fig. 2 has five vertical slices associated with Each of the spikes in Fig. 1 represepts(x, ) at a specific

it. The one atr = 2 is depicted in Fig. 3. The secondary meméz, u)-pair, and its amplitude is a secondary grade. [ |
bership function at: = 2 is 115(2) = 0.5/0 + 0.35/0.2 + Definition 5: Uncertainty in the primary memberships of a
0.35/0.4 +0.2/0.6 + 0.5/0.8. B type-2 fuzzy setA, consists of a bounded region that we call

Based on the concept of secondary sets, we can reinterprétefootprint of uncertaintfFOU). It is the union of all primary
type-2 fuzzy set as the union (see footnote 4) of all secondanemberships, i.e.,

FOU(A) = | J /. @)

4Recall that the union of two sei$ and B is by definition another set that z€X
contains the elements in eithéror B. When we view each element of a type-2 ]

fuzzy set as a subset, then the unions in (2) conform to the classical definitio . . . :
of union, since each element of that set is distinct. At a specific valueanid "The shaded region in Fig. 1 is the FOU. Other examples of

u only one term is activated in the union. FOUs are given in Fig. 4. The terfootprint of uncertaintyis
5In this case, the third dimension disappears. very useful, because it not only focuses our attention on the un-
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certainties inherent in a specific type-2 membership functio A A
whose shape is a direct consequence of the nature of these
certainties, but it also provides a very convenient verbal descri
tion of the entire domain of support for all the secondary grads
of a type-2 membership function. It also lets us depict a type
fuzzy set graphically in two-dimensions instead of three dimel
sions, and in so doing lets us overcome the first difficulty abot
type-2 fuzzy sets-their three-dimensional nature which mak
them very difficult to draw. The shaded FOUs imply that ther.
is a distribution that sits on top of it—the new third dimension o1 4
type-2 fuzzy sets. What that distribution looks like depends o
the specific choice made for the secondary grades. When th
all equal one, the resulting type-2 fuzzy sets are catiestval
type-2 fuzzy setsSuch sets are the most widely used type-z
fuzzy sets to date.

Definition 6: For discrete universes of discoursé and
U/, an embedded type-2 set. has N elements, whered,
contains exactly one element froly,, J,,, ..., J;,, namely
uy,u2,...,un, €ach with its associated secondary grade, © (d
namely fo, (u1), fo, (u2), - - -, foy (un). i€, Fig.4. FOUs. (a) Gaussian MF with uncertain standard deviation. (b) Gaussian

MF with uncertain mean. (c) Sigmoidal MF with inflection uncertainties.
v (d) Granulated sigmoidal MF with granulation uncertainties.

= Un(w)/uwl/zi wi€ls CU=[0.1. (8
*M;(%u)

=1
SetA, is embedded ini, and, there are a totadf [, M; A..m 1
Definition 7: For discrete universes of discour&eand U,
an embedded type-1 set. has N elements, one each from
Jorsdmgs oy, NAMElYUL, ug, ..., upn, i€,

TN

(b)

z

N
APZZU7/-T7 UWEJT7 §U=[0,1] (9)

=1

(=)
—
o
W
P
N

0.2

Set A, is the union of all the anmary memberships of setin 0.4 / /
(8), and, there are a total of,_, M;A.. u ) /

Example 2: Fig. 5 depicts one of the possible 1250 em 0.6
bedded type-2 sets for the type-2 membership function tt (¢ / /
is depicted in Fig. 2. Observe that the embedded type / / / /
set that is associated with this embedded type-2 set /
A, =0/1+0.4/24+0.8/3+0.8/4+0.4/5.

Deflnltlon 8: A type-1 fuzzy set can also be expressed asmg 5. Example of an embedded type-2 set associated with the type-2
type-2 fuzzy setts type-2 representation & /pp(x))/x or membership function depicted in Fig. 2.
1/urp(x),V; € X, for short. The notatiott /() means that
the secondary membership function has only one value in its

domain, namely the primary membership(z), at which the Theorem 1: Consider the general FOU that is depicted in
secondary grade equals 1. m Fig. 6. We call each point along the line anode Each node

along theu;-axis is contained in exactly

yaras
e

B

N\

PR A A 2

I1l. A NEW REPRESENTATION FORTYPE-2 FUZzY SETS

So far we have emphasized the vertical-slice representation = H M; (10)
(decomposition) of a type-2 fuzzy set as given in (5). In this sec- i=Li#l
tion, we provide a new (canonical) representation for a typeegnbedded (type-2 or type-1) sets, wheee 1,2,..., N.
fuzzy set that is in terms of so-callevavy slices This repre- Proof: All embedded sets start with an element along the

sentation makes very heavy use of embedded type-2 fuzzy sgtsaxis, and each element along that axis fans out into exactly
(Definition 6). Before we state and prove this new representpff\ M; embedded sets. Note that

tion, we state and prove the following preliminary result:

8For continuous type-2 fuzzy sets, there are an uncountable number of em- H M; = H M; =n;. (11)
bedded type-2 fuzzy sets, and this concept is not very useful. =2 j=1,j#1
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Au Aul A2 AB AW AY A A u U,
: 0-9___:,0.5/0.9
———#0.2/0.7
0.7 40.6/0.6
$0.1/0.4
0.2 $0.9/0.2
» x
X Xy
(a)
A U U,
p x
X3 X3 Xy Xs X > x
x X
Fig. 6. Example of a FOU on discretized andu-axes. HereV = 6. ! (b) 2

Next, ConSider_3|eme_nt5 along the-axis. TheM; elemen_ts Fig. 7. (a) Vertical-slice representation fdrin (19). (b) Six embedded type-2
along thew;-axis fan into all the elements along thg-axis fuzzy sets, each connected by a line fremto .

after which each element along thg-axis fans out into exactly
Hf;g M; embedded sets. This means that there are a total of Proof: We prove this theorem by demonstrating that (6)
M, H]’,\":g M; embedded sets for each node alongdhexis. Can be re-expressed so that it contains exactly all of the terms
Note that on the right-hand side of (15). Theorem 1 is the key to doing
this. What we do is to repeat term 1 in () times, term 2 in
(6) no times,. .., and termV in (6) ny times [using the fact,
M H M; = H M; = na. 12) ¢ g., thatd; + A A; (where+ denotes union)], i.e.,

. My
mel(ulk)/ulk]/xl}—i—...
k=1

ny
Continuing in this way for thes-, . . ., andux-axes, we obtain A = Z {

the resultin (10). [ | i=1
Next, we present a new decomposition for a type-2 fuzzy set nN My
that we refer to as Representation Theorem + Z { [Z wa(uNk)/uNk] / N} a7
Theorem 2 (Representation Theorenhet Ag denote thgth i=1 { Lk=1
type-2 embedded set for type-2 fuzzy skti.e., We must now demonstrate that (17) can be reorganized as
- in (15). We do this by proving that (17) has exactly the same
A = {( ul, fa, ( z)) 1=1,. N} (3)  humber of terms (elements) as does (15). The actual construc-

tion of the A/ is discussed below in Comment 1.

' Note that, according to Definition 6, eacli has exactlyN
uwl € {u, k=1,...,M}. (14) elements. Henced in (15) has exactiyyN = N x Hz‘rl M;
elements (many of which are duplicated). In (1Xhasn, M; +
oMy + -+ + ny My elements; but, from (10), it follows that:

where (see Definition 6 and Fig. 6)

Then A can be represented as the union of its type-2 em

bedded sets, i.e.,
My +noMo+ -+ nyMpy

A=S" (15) 5 l Al
; —HM7+HM++HM7

wheré N
=Nx ][] M (18)

N :
n= HMi. 16 =

which proves thatd in (17) has exactly the same number of

elements ast in (15). [ |
"The summation in (15) is still a classical union. Duplicated elements (ther 1:1 d | 15 d
will be many of them because the embedded type-2 fuzzy sets contain man)pommem n order to implement (15), one needs a
duplicated elements) only count once, as in any union. constructive method for specifying eadg Note thatj is the
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solution to the following combinatorial assignment problem A“
Determine all possible

combinations(ay, az, ..., an) W

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

Aus...

wsooo

such that (u1e,, %2405+, UNay) — 7, Where a; €
{1,2,...,M1},a2 S {1,2,...,MQ},...,GN S
{1,2,...,My}, andj = 1,2,...,][L, M;. A computer

program can be written to mafa,,as, ..., ax) into j. For
the purposes of this paper, we do not need such a progra
because we only use (15) for theoretical derivations and not fi

computational purposes. Its use for computational purpos:
would be terribly inefficient since it contains an enormous
amount of redundancy. [ |

Comment 2: Theorem 2 expresses as a union of simpler
type-2 fuzzy sets, thel/. They are simpler because their sec-

ondary membership functions are singletons. Whereas (5) is
vertical slice representation df, (15) is awavy slicerepresen-

tation of A. n
Example 3: Consider the following type-2 fuzzy set:
A =(0.5/0.9)/x1 4 (0.2/0.7)/z1 + (0.9/0.2) /2,
+(0.6/0.6) /5 4 (0.1/0.4) /z5. (19)

The vertical-slice representation df is depicted in Fig. 7.
3,Ms* = 2,andny = M{*M;' = 6.

Observe that\/;*

Hence, there are six embedded type-2 sets, namely

X X2 X3

Fig. 8. Two representative embedded type-2 fuzzy sets. The filled circles and
rectangular flags denote the primary memberships and secondary gradés for
whereas the crosses and triangular flags denote the primary memberships and
secondary grades fd8:. The solid and dashed curves are associated with the
embedded type-1 fuzzy setd? and B}, respectively.

0
A= (0.5/0.9)/x1 +(0.6/0.6) /2 (202)  From Representation Theorem 2, it follows that:

A? =(0.5/0.9)/z1 + (0.1/0.4) /zo (20b)

A2 =(0.2/0.7)/x1 + (0.6/0.6) /22 (20c) . _ ha . mB  nan

i _ J i _ J 7

A% = (0.2/0.7) /2 + (0.1/0.4) /s (20d) AUB = 2 AL ; B = ; ; AUBL (29
A> =(0.9/0.2)/z1 + (0.6/0.6) [z (20e)

AS =(0.9/0.2) /1 + (0.1/0.4) [z (20)  This demonstrates that to evaluate) B we need to evaluate

It is very easy to see (refer to footnote 3) that =

6 _

IV. APPLICATIONS

the union of type-2 embedded sets, i.e., we need to evaluate
AJ U Bi(vi, ), a calculation to which we turn next.

Two representative embedded type-2 fuzzy sets are depicted
in Fig. 8. Each embedded type-2 set has only one node on its
u;- OF wi-axes. The rectangular and triangular flags denote the
secondary grades at each node, and are merely meant as a pneu-

In this section, we apply the Representation Theorem to the)nic for those grades.

derivation of formulas for union, _intersection and com_pleme_nt Next, recall (as explained in Section I1) that a type-1 fuzzy set
of type-2 fuzzy sets, without having to use the Extension Prigan pe interpreted as a type-2 fuzzy set all of whose secondary

ciple.

A. Union of Type-2 Fuzzy Sets

Consider two type-2 fuzzy set$ and B, where

A= pa@)/@)> 0 | D0 falw)/u /w
rcX X |ucJdy
Jy €[0,1] (21)
and
B=Y pp@/fz=> | gw)/w /x
zCX zCX |wcJ¥
JrC [0, 1]. (22)

grades equal unity (i.e., all flags equal 1). In fact, a type-1 fuzzy
set is an instance of a type-2 fuzzy set. It is a crisp version of
a type-2 fuzzy set. Given that this is the case, it seems sensible
to consider using the type-1 definitions for union, intersection,
and complement as a starting point and generalizing them to a
fuzzytype-1 fuzzy set—a type-2 fuzzy set. Next, we show that
by taking this approach we do not directly need to use, or make
any reference to, the Extension Principle.

8This equation involves summations and union signs. As in the type-1 case,
where this mixed notation is used, the summation sign is simply shorthand for
lots of + signs. Thet indicates the union between members of a set, whereas
the union sign represents the union of the sets themselves. Hence, by using both
the summation and union signs, we are able to distinguish between the union of
sets versus the union of members within a set.
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Recall, from Definition 7, that/ andBéare the embedded Lemma 1:Under the four properties just stated,is a
type-1 fuzzy sets that are associated withand B¢, respec- ¢-norm.

tively. In the type-1 case Comment 3:No doubt, one could require a different Property
' ‘ o ' ‘ 4, e.g.,h(a,0) = a andh(0,b) = b, in which case: would be
AlUB. =]V wi/xl + up Vv wé/xQ + - at-conorm. We find such a requirement formuch less plau-
p 4 sible than our Property 4, and so recommend chookiag a
+uy Vv wﬁ\’/“’ (24 t-norm. [

Comment 4: People already familiar with the Extension Prin-
'cﬂﬁe will claim that (27) is exactly what would be obtained by
applying the existing formula for the union of two type-2 fuzzy

j i J i J i setstad’ andB?, and they would be correct (whéris at-norm).
AlUB. = [1/% v wl}/xl + [1/% v wQ} /372 T However, we have reached (27) without needing to know any-
+ [1/%, \/w”/x]\ (25) thing about the Extension Principle, and would have reached

that point even if the Extension Principle didn’t exist. [ |

Observe that in this representation, the “flag” (i.e., secondaryWe are now ready to state the main result of this section.

which (see Definition 8) can be expressed as a type-2 set
follows:

grade) at eaclaf V i point is unity. Theorem 3: The union of two type-2 fuzzy setsi and B is
In the type- 2 case, where the flags start out being differegiven as

at eachu andwl points, we need to keep track of them as we na np , ,

performAJ UB:. Callthe flag (see Fig. 8, e.q., foe= 2) atu], AUB=) Y { [ - (u{,wi)/u{ Vv w§:| /971 4.

which occurs whem: = a4, f., (;), and the flag atv?, which j=14=1

also occurs whew = x;, g, (w;). Let h be some operation It J i ]

(defined below) on the twg flggls)that produces a ne?/v flag that * [Fm (uN’wN>/uN v w]\}/x]\} (28)

uniquely identifies: v wi. Call this new flagF, (u; ,w}), i.e., Where

Eo (sdod) = [ () s ()] 29) o (i) = 1 [ fe (1) 90 ()]

. . . - fl‘z (U’l) * gl‘z ( ) (29)
In analogy to (25), we nowlefineA? U B! as follows: ) . .
andx is at-norm (e.g., minimum, product, etc.). Equation (28)
AUB = |:Fw1 (ujlvwi)/ujl Vwﬂ/xl 4+ can also be expressed as
P ; ; AUB
+ |:F73N (uk” w/\")/“’;\’ v wN:| /‘/EN' (27) My (uy) My (wy) '

J ot RV .

This is a very plausible way to define the union of embedded Z Zz: o (ul’wl)/ul wl}/xl +

type-2 fuzzy sets, since it reduces to our accepted type-1 defini- MV(UV) Ma(wow)
tion of union when all flags equal unity. It also establishes the — i j ;
constraint that(1,1) = 1, which forces the type-2 result in * Z Z [F"”N (uN’wN>/uN v wN} /“
(27) to reduce to the type-1 result in (25) when all uncertainties - = (30)
disappear.

Next, we demonstrate that an appropriate choicehfig a Comment 5: Equation (28) is thavavy-sliceexpression for
t-norm. We begin by requiring. to have the following four AU B, and although itis very easy to derive, as we demonstrate in

properties: the proof below, it is not recommended for computing purposes
1) h(a,b) = h(b,a); because it can contain an enormous number of terms. Equation
2) 0 < h(a,b) < 1; (30), on the other hand, which isvartical-sliceexpression for
3) h(1,1) = 1; AU B, is very practical for computing purposes. ]
4) h(a,0) = h(0,b) = 0. Proof: Substitute (27) into (23) to obtain (28). Equa-

Property 1) is intuitive, because it should not matter in whicien (29) follows from Lemma 1 applied td, (u,wp) =
order we handle the flagsandb. Property 2) is also intuitive, 2[f= (7)), gz, (w})]. To obtain (30), we first rewrite (28) as
becausei(a, b) is another flag, which means that it is a sec- o ' ‘

ondary grade for a secondary membership function, and all sécu B = Z Z [ x (U{,wi)/ujl \ wi} /xl + .-

ondary grades must be bounded according to Definition 1. We j=14=1

have already justified Property 3). Property 4) involves flags that nA B P p ;

each have zero values. Such flags (which are perfectly permis- + Z Z [ @ (uj\,,wN)/uj\, v w]\}/x]\ (31)
sible) allow secondary membership functions to have zero (i.e., j=li=l

vacuous) secondary grades at specific values of primary mewing this has immediately led to a vertical-slice representa-
berships. Property 4 requires that a vacuous flag in one fuzign for A U B. All that remains is to simplify the upper limits
set must remain vacuous in any fuzzy set derived from it, whigh each of the summations of (31). This is very easy to do. Con-
again seems plausible. It is now obvious, from the propertiessifler the first term in (31). According to Definition @4, =
at-norm, that: [T, Mi(u;) andnp = [, M;(w;); but, atz, there are at



124 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

most (e.g., see (61 (uy) terms fromA and M, (w;) terms summarize the results in Theorem 4 whose proof we leave to
from B. Hence, we are permitted to simplifys to AM;(u,) and the readers

np t0 My (wy) in this first term. In the second term of (31), we =~ na ~ ns na ns
are permitted to simplifyn s to Ma(uy) andnp to Ma(ws). ANB=Y AInY Bi=> Y AInB: (35)
Continuing in this manner, we obtain (30). ] j=1 i=1 j=1i=1

Comment 6: Here, we connect our result in (30) with the al- Ag N Bz _ U:JL /\wi/an + uJQ Awé/m 4+
ready existing formula for the union of two type-2 fuzzy sets,

given in [34]. Because the union af and B is another type-2 + uj\ A wﬁ\/ TN (36)
fuzzy set, it follows from the discrete version of the first expres- : . } . :
sion in (5) that arnBi=[1ful nw] for+ (1 [fuf nuwd] [+
- J i .
AUB & pyple,v) Z“AUB /x (32) +[1/u]\r/\w]\}/aﬁ1\ (37)
zCX A‘émBZE |:le (U‘Lwi)/u‘i/\wi}/xl_i_
where, from the Extension Principle [34], one obtains the fol- + [Fm (uj\,wﬁ\)/uj\ A wﬂ /371\ (38)

lowing expression for. 5 5 («) [a derivation of (33) is given in .
Appendix A so that readers who are unfamiliar with the appli- Theorem 4: Theintersectionof two type-2 fuzzy setsl and
cation of the Extension Principle to the derivation of (32) ca® is given as

see exactly how it is done]: R N | |
=Y Y s ge(w)/Vw) e X. A“Bzgg{[wl(u%wi)/u’mwﬂ/m...

ueJ¥ weJY (33) [ (Ug\m w?\’)/uf\’ A w?\’} /JCN} (39)

whereF,, (ul, w}) is given in (29). Equation (39) can also be
Another way to express (33) is in terms of the secondary meexpressed as

bership functions ofi and B, 5 () and i (z), as My (ue) Ma (102)

paup(® Z Zf"r w) * go(w)/uVw ANB = ;::1 EZ: [ 1(“{7“171)/1/1/\1111}/3;14_

uEJE weTE My (un) My (wn)

=pa(@)Upp(r) zeX (34) + Z Z [me (u’,\,wﬁ\)/uj,\ /\w”/x;\ (40)

wherell denotes the so-callgdin operation. The use of the no- Comment 8: Here, we connect our result in (40) with the al-

tationy.; (x)Lup(2) to indicate the join between the secondaryeady existing formula for the intersection of two type-2 fuzzy
membership functions 3 (x) and () is, of course, a short- oo " given in [34]. Because the intersectionioind 3 is an-

hand noFatlon for the operations in the middle of ,(34),' other type-2 fuzzy set, it follows from the discrete version of the
Equation (30) is exactly the same as the combination of ( t expression in (5) that:

and (33), because each term of (30) is the same as (33). Whereas
(33) was derived from the Extension Principle, we have been ANB & pyqpe,v) Z pani(@ (41)
able to obtain this same result without it. Since we have reached zCX

the same results as obtained by using the Extension Princigiyere, from the Extension Principle [34], one obtains the fol-
our results also serve to validate the use of the Extension Piigwing expression for 3 («) [the derivation of (42) is so sim-

ciple. ilar to the one given for the union that we have not included it
Note, also, that if the fourth property féris changed, then here]:

our result in (30) remains unchanged, but (33) is no longer valid

because it is in terms of &norm. since the Extension Prin- #ins(®) = Y > fe(w) x gu(w)/(uAw),  z€X.
ciple is in terms of &-norm. In this sense, our derivation of the uEJ weTY

union is also more general than the one that uses the Extension (42)
Principle. ™ Another way to express (42) is in terms of the secondary mem-

Comment 7:Each of theV terms in (30) is a join operation

» bership functions ofi and B, 5 (=) anduz(x), as
so that we can describe the uniondfindB as the union ofV

joins. The term “join” is very useful in that it lets us linguisti- tang(@ Z Z Jo() * ge(w)/u A w
cally described U B. [ | weJE weJw
=pa(@) Npplr) reX (43)

B. Intersection of Type-2 Fuzzy Sets wherer denotes the so-calletieetoperation. The use of the

Because the derivation of the intersection of two type-2 fuzzptationy: 5 (x) M 5 () to indicate the meet between the sec-
setsA andB is so similar to the derivation of the union of thosendary membership functions; («) andp. ; () is, of course, a
two sets, we merely state the sequence of formulas and tltorthand notation for the operations in the middle of (43).
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Equation (40) is exactly the same as the combination of (4Uking exactly the same arguments that we did at the end of the
and (42), because each term of (40) is the same as (42). Wheprasf of Theorem 3, we conclude that (50) can be re-expressed
(42) was derived from the Extension Principle, we have beas in (45). [ |
able to obtain this same result without it. This, again, servesComment 10:Because the complement of is another
to validate the use of the Extension Principle. The rest of tlype-2 fuzzy set, it follows again from the discrete version of
discussion in the last paragraph of Comment 6 applies heretlas first expression in (5) that:

well [ ]
Comment 9: Each of theV terms in (40) is a meet operation, Ae pa(@v) Z pale (1)
so that we can describe the intersectioniafnd B as the union zeX

of N meets. The term “meet” is very useful in that it lets u¥here, from the Extension Principle [34], one obtains the fol-
linguistically described N B. m lowing expression fo: 5 [we leave the derivation of (52) to the

reader]'

C. Complement of Type-2 Fuzzy Sets Z Fulw)/(1 =) pi(z) zeX  (52)
x - = M3

Our final application of the Representation Theorem is to Ha uely
compute the complement of. R

Theorem 5: The complement of type-2 fuzzy sdtis given
as

in which— denotes the so-calletegationoperation. The use of
the notation—z ; («) to indicate the negation of the secondary
membership functiop 5 () is yet another shorthand notation,

- A /N h h but this time for the operations in the middle of (52).
A= <Z [fxz- (Ui)/ (1 - Uf)} /$z> (44) Equation (45) is exactly the same as the combination of (51)
g=1 o\ and (52), because each term of (45) is the same as (52). Whereas
wheren 4 is given by (16). Equation (44) can also be expresséa?) Was derived from the Extension Principle, we have been

as able to obtain this same result without it, which again serves to
Iy validate the use of the Extension Principle. [ |
= : : ; Comment 11:Each of theV terms in (45) is a negation oper-
— J . .
A= Z Z [fl‘z ( 7)/ (1 - u7)} /”jZ ) (45) ation, so that we can describe the complement at the union

1= Jj=

of N negations. The term “negation” is very useful in that it lets
Proof: From (15), we see that us linguistically describel. [ |

A= Z ;12 (46) D. Interval Type-2 Fuzzy Sets

Interval type-2 fuzzy sets are the most widely used type-2
fuzzy sets because they are simple to use and because, at
which demonstrates that to evaluateve need to evaluate thepresent it is very difficult to justify the use of any other kind
complement of type-2 embedded sets, i.e., we need to evaIL@t@ there is no best choice for a type-1 fuzzy set, so to
A In the type-1 case compound this nonuniqueness by leaving the choice of the
. p h secondary membership functions arbitrary is hardly justiffable
Al = (1 - U{)/xl +oF (1 - UJN)/M (47) ). When the type-2 fuzzy sets are interval type-2 fuzzy sets,
all secondary grades (flags) equal 1 [e.g., in (21) and (22),
Vf., (u)) = 1 andvg.,, (w;) = 1]. In this case we can treat em-

Al = [1 /(1 - u{)}/xl bt [1 /(1 _ u;\) } /x]\ bedded type-2 fuzzy sets as embedded type-1 fuzzy sets [e.g.,
(27) is the same as (25)] so that no new concepts are needed

which can be expressed as a type-2 fuzzy set, as follows:

(48) to derive the union, intersection, and complement of such sets.
We nowdefiner as follows: After each derivation, we merely append interval secondary
o grades to all the results in order to obtain the final formulas
Zi — [fwl (U{) /(1 _ u{)}/xl 4. for the union, intersection, and complement of interval type-2
' fuzzy sets. Closed-form formulas exist for these operations,
+ [fw (uj\) /(1 - uj\)}/xj\ and their derivations can be found, e.g., in [33, Ch.. 7].

N
_ o ) . V. CONCLUSION
=30 [ () /(1=2)]/ (49)

We have established a small set of terms (type-2 member-

Substituting (49) into (46), we obtain (44). ship function, secondary membership function, vertical-slice,

To obtain (45), we first rewrite (44) as primary membership, secondary grade, footprint of uncertainty,
s embedded type-2 fuzzy set, embedded type-1 fuzzy set, and

A= ; [fn (Ui) /(1 _ Ujl) } /a71 +. wavy-slice) that let us easily communicate about type-2 fuzzy
' sets. They also let us define such sets very precisely. We have

: j j 9This is analogous to using a uniform probability density function (pdf) when
+ Z |:wa (u]\) /(1 - UN> } /371\ (50) all that is known is that something is random, but the precise nature of the un-
j=1 derlying pdf is unknown.
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also presented a new Representation Theorem for type-2 fuzzWhen we need to extend an operation of the form

sets and have shown how it can be used to derive formulas f@r,...,«,) to an operation f(Ay,...,A.), where the

the union, intersection, and complement of type-2 fuzzy sefs are type-1 fuzzy sets, we do not extend the individual oper-

without having to use the Extension Principle. In doing so , wattions, like multiplication, addition, etc., involved jh Instead,

believe that we have made type-2 fuzzy sets much easier to we use the following definition, which derives directly from

derstand and to work with, which was our stated goal. (A-1) when the maximum operation is used for the union and a
The centroid of a type-2 fuzzy set has been defined by [1§&nerak-norm (x) is used instead of the minimum operation

and [19]°. All centroid formulas start with a formula for the

centroid of a type-1 fuzzy set to which the Extension Principl&(Ai, ..., 4,) = / / pra, (T1) * -

is applied. Computational procedures are then provided for ac- 71EX TrEXy

tually computing the centroid of a type-2 fuzzy set. These proce- *pea, (@) / f@e, o 2r).

dures all wind up computing centroids of all possible embedded

type-2 fuzzy sets that are associated with the original typeB2 Derivation of the Union of Two Type-2 Fuzzy Sets

fuzzy set. It is the totality of all such centroids that make up Using a discrete version of (5), (32) can be re-expressed as
the centroid of the type-2 fuzzy set. Using the new Represen-

(A-2)

tation Theorem of this paper, we could immediategfinethe AUB & p; plz,v) = Z paup(z)/z
centroid of a type-2 fuzzy set, in a very rigorous way, as the cen- zeX
troid of all of its embedded type-2 fuzzy sets. By this approach,
we reach exactly the same result as was reached by invoking the = Z Z ha(v)/v / T (A-3)
Extension Principle, but without having to use it. z€X |vedzClo,1]

We await other applications of our Representation TheoreWhere

APPENDIX A
DERIVATION OF THE UNION OF TWO TYPE-2 FUzzY SETS Y. h@fv=e| > flw)/u D] go(w)/w
USING THE EXTENSION PRINCIPLE vCJyE[0,1] ueJy weJy
= p(pa(x), ppx)) (A-4)

In this Appendix, we review the statement of the Extension
Principle and present a version of it that we then use to obtain #@d ¢, which plays the role of in (A-2), is at-conorm func-
union of two type-2 fuzzy sets. We leave the derivations of tH@®n of the secondary membership functiopg(z) andp (),
intersection of two type-2 fuzzy sets as well as the compleme#bich are type-1 fuzzy sets: is a¢-conorm function because

of a type-2 fuzzy set to the reader. the union of two type-1 fuzzy sets is equivalent to theonorm
(e.g., maximum) of their membership functions. Note that the
A. The Extension Principle right-hand side of (A-4) plays the role ¢f(z1,x2) in the Ex-

. tension Principle. Following the prescription of the right-hand
Let Ay, As, ..., A, be type-1 fuzzy sets iK1, X5, ..., X, side of (A-2), we see that:

respectively. Then, Zadeh’s Extension Principle [44] allows us
to induce from the- type-1 fuzzy setsi,, 4, ..., 4, atype-1
fuzzy setB onY’, throughf, i.e..B = f(A1, Ay, ..., A, ), such @ | > fo(w)/u, Y ga(w)/w

that uEJY weJw
sup min {pa, (21), ..., ppa, ()} = Z Z fe(u) * go(w)/p(u, w).  (A-5)
pp(y) =4 @1r)ef () ueJ weJy
R —1 —
0 if /7 (y) =0 Wheng is the maximum operatiow, theny(u, w) = uVw, SO
(A1)  thatwhen (A-5) is substituted into (A-3) far; 5 () we obtain
where f~1(y) denotes the set of all poinis € Xi,...,, € pavs@) = Y. ha(v)/
X, such thatf(z1,...,z,.) = . vCJ2C0,1)
As is well known, to implement (A-1) we first find -
’ . = - - \ € X
the values ofzy,...,x, for which vy = f(z1,...,2,.), u; w; Fo(w) > ga(w)/(uV w) -z
after which we compute pa,(21),..., 04, (x.) and v (A-6)
min{pa, (1), ., pa, (z-)} at those values. If more than one
set ofzy, ..., =z, satisfyy = f(z1,...,z,) then we repeat this which is (33).
procedure for all of them and choose the largest of the minima
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